
Oscillations



Oscillating Systems

Each day we encounter many kinds of oscillatory

motion, such as swinging pendulum of a clock, a

person bouncing on a trampoline, a vibrating guitar

string, and a mass on a spring.

They have common properties:

1. The particle oscillates back and forth about a

equilibrium position. The time necessary for one

complete cycle (a complete repetition of the motion) is

called the period T.



2. No matter what the direction of the displacement,

the force always acts in a direction to restore the

system to its equilibrium position. Such a force is

called a “restoring force”.

3. The number of cycles per unit time is called the

“frequency” f.

Unit: period (s)

frequency(Hz, SI unit), 1 Hz = 1 cycle/s

T
f

1


4. The magnitude of the maximum displacement from 

equilibrium is called the amplitude of the motion.



The simple harmonic oscillator 

and its motion

1. Simple harmonic motion

An oscillating system which can be described in terms
of sine and cosine functions is called a “simple
harmonic oscillator” and its motion is called “simple
harmonic motion”.

2. Equation of motion of the simple harmonic oscillator

Fig 17-5 shows a simple harmonic oscillator, consisting
of a spring of force constant K acting on



a body of mass m that slides on a frictionless horizontal 

surface. The body moves in x direction.
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Eq(17-4) is called the “equation of motion of the
simple harmonic oscillator”. It is the basis of many
complex oscillator problems.

Rewrite Eq(17-4) as 

(17-5)

We write a tentative solution to Eq(17-5) as 

(17-6)
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3. Find the solution of Eq. (17-4)
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We differentiate Eq(17-6) twice with respect to the
time.

Putting this into Eq(17-5) we obtain 

Therefore, if we choose the constant     such that

(17-7)

Eq(17-6) is in fact a solution of the equation of
motion of a simple harmonic oscillator.
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a) : 

If we increase the time by         in Eq(17-6), then 

Therefore      is the period of the motion T.
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The quantity      is called the angular frequency.
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b)       : 

is the maximum value of displacement. We call it

the amplitude of the motion.

c) and     : 

The quantity              is called phase of the motion. 

is called “phase constant”.

and     are determined by the initial position and 

velocity of the particle. is determined by the system.
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How to understand       ?
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How to compare the phases of two SHOs with 

same         ?
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(c) same:      ,

different: 
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Fig 17-6 shows several simple harmonic motions.
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d). Displacement, velocity, and acceleration

Displacement 

Velocity

Acceleration

When the displacement is a maximum in either
direction, the speed is zero, because the velocity
must now change its direction.
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Energy in simple harmonic 

motion

1.The potential energy

(17-12)

2.The kinetic energy
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Fig 17-8(a)



• Fig17-8(a), both potential and kinetic energies

oscillate with time t and vary between zero and

maximum value of .

• Both U and K vary with twice the frequency of the

displacement and velocity.

3. The total mechanical energy E is
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At the maximum displacement             ,               .

At the equilibrium position          ,               .

Eq(17-14) can be written quite generally as                                                    
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Sample problem 17-2

In Fig 17-5, m=2.43kg, k=221Nm-1, the block is
stretched in the positive x direction a distance of
11.6 cm from equilibrium and released. Take time
t=0 when the block is released, the horizontal
surface is frictionless.

(a) What is the total energy? 

(b) What is the maximum speed of the block?

(c) What is the maximum acceleration?

(d) What is the position, velocity, and acceleration 

at t=0.215s?
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Fig 17-5



Solution:

(a)

(b)

(c) The maximum acceleration occurs just at the 

instant of release, when the force is greatest

(d) 
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Since                         at t=0, then

So at t=0.215s
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Sample problem 17-3 

In Fig17-5, m=2.43kg, k=221N/m, when the block 

m is pushed from equilibrium to x=0.0624m, and 

its velocity                        , the external force is 

removed and the block begins to oscillate on the 

horizontal frictionless surface. Write an equation 

for x (t) during the oscillation.
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Solution:

:

Setting this equal to         , we have

To find the phase constant     , we still need to use the 

information give for t=0:
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The restoring force is:

(17-22)

If the    is small, 

The simple pendulum

Fig(17-10) shows a simple pendulum of length L
and particle mass m.
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Damped harmonic motion

Up to this point we have assumed that no frictional

force act on the system.

For real oscillator, there may be friction, air

resistance act on the system, the amplitude will

decrease.

1. This loss in amplitude is called “damping” and

the motion is called “damped harmonic motion”.
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Fig 17-16

Fig17-16 compare the motion of undamped and 

damped oscillators.



Forced oscillations:

Oscillations of a system carried out under the action of 

an external periodical force, such as

or a successive action of an external non-periodical force.

Forced oscillations and 

resonance
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of the external force, namely        .''



Resonance:
The  amplitude of the forced 

oscillation can increase much 

as       approaches     .
'' 

This condition is known as 

“resonance” and       is called 

“resonant angular frequency”.
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In the case with damping, the rate at which energy

is provided by the driving force exactly matches the

rate at which energy is dissipated by the damping

force.


