Charged particles

Direction of conventional current

Direction of flow of positive charge

Direction of flow of electrons

Electron beam tube

to demonstrate the magnetic force on a moving charge

Electron gun a beam of electrons

Magnets magnetic field

Fleming's left-hand rule

thumb – force

forefinger – field

second finger – current

Deflection of electron beams in magnetic field

Electrons – from right to left

Magnetic field – into the plane of paper

Force – upwards

Force due to the magnetic field is always at right angles to the velocity of the electrons

when direction of the beam changes, the direction of the force changes

Electron beam tube

Electron gun

a beam of electrons

Magnets

magnetic field

<u>Cathode</u> electrons

Anode attracts electrons

Plates changes direction

Force on a charge depends on

- the magnetic field flux density B
- ➤ the charge Q on the particle
- ➤ the speed v of the particle

$$F = BQv$$

'Bev' force

$$F = Bev$$

Fleming's left-hand rule

The force is always at 90° to the velocity

So arc is formed

$$F = BII \iff F = BQv$$

So fucking important reminder:

"The net force F is always at right-angles to the particle's velocity v"

Orbiting charges

when a charged particle is moving at right angles to a uniform magnetic field

charged particle forms a circular path

because

The magnetic force F is always perpendicular to its velocity v

Orbiting charges

centripetal force =
$$\frac{mv^2}{r}$$

centripetal force = Bev

$$\gamma = \frac{mv}{Be}$$

$$P = Ber$$

Orbiting charges

From
$$\gamma = \frac{mv}{Be}$$
:

- **➤ Fast** particles form bigger circles
- ➤ Heavier particles form bigger circles
- Weaker field forms bigger circles

$$r \sim v$$

$$r \sim m$$

$$r \sim \frac{1}{B}$$

To find the mass of an electron

First find the charge-to-mass ratio $\frac{e}{m}$

From
$$r = \frac{mv}{Be}$$
:

$$\frac{e}{m_e} = \frac{v}{Br}$$

To find v:

cathode-anode voltage V_{ca}

 V_{ca} causes each electron to accelerate

If each electron has charge —e

Work done on each electron is $e * V_{ca}$

This is its KE (=
$$\frac{1}{2}m_ev^2$$
)

$$eV_{ca} = \frac{1}{2}m_ev^2$$

$$\gamma = \frac{m_e v}{Be}$$

$$\frac{e}{m_e} = \frac{2V_{ca}}{r^2 B^2}$$

Now, we need [$V_{ca} \mid r \mid B$]

Electric and Magnetic fields

Deflection tube

a beam passes through electric and magnetic fields

to keep the beam horizontal, you can balance the forces the magnetic and electric fields provide

Electric and Magnetic fields

To keep the electron beam to be straight:

forces of the two fields must have

same magnitude opposite directions

Electric and Magnetic fields

electric force 1 = magnetic force 1

$$eE = Bev$$

$$v = \frac{E}{B} \longrightarrow E = \frac{V}{d} \longrightarrow v = \frac{V}{Bd}$$

Velocity selection

Velocity selector

a device that uses a process of balancing the effects of *electric* and *magnetic* fields to produce a beam of desired *speed*

Velocity selection

Only particles with correct combination of [charge | mass | velocity] will emerge through slit

Discovering the electron

the English physicist who discovered the electron using the vacuum tube

J.J. Thomson

Thomson's conclusions

Electrons have negative charge

Electrons remain as a tight beam after deflection

The beam remains straight when there's balance between forces

Particles were deflected towards a positive plate

So particles were negatively charged

From deflection of the beam by magnetic field

When deflected, the beam remained as a tight, single beam

instead of being broad beam

Particles all have same [mass | charge | speed]

The beam remained straight due to the balance of the forces of electric and magnetic field

From there, he could calculate $\frac{e}{m_e}$

Robert Millikan

the American physicist who measured *e*

Millikan's procedure

He produced oil droplets

using atomizer spray He determined velocity (and weight)

when the electric field was switched off

He determined that the droplet's weight was balanced by the electric force

Switched the field on and adjusted until the droplet remained stationary

The droplet that absorbed an electron would gain negative charge so the electric force on it would change

Included a source of beta-radiation

Millikan found that the charges were all small multiples of a particular value, e

So, m_e is now calculated $\frac{e}{m_e}$ and $\frac{e}{m_e}$

Quantization of charge

The electric charge is quantized

which means

The charge must have a value which is multiple of *e*